Limits

Limits and continuity

Let $f:I \to \mathbb{R}$ be a function defined on some open interval $I$ of $\mathbb{R}$ except possibly at the point $a$.
$f(x)$ tends to $l$ as $x$ tends to $a$, $\lim\limits_{x \to a} f(x) = l$, if for every sequence $x_n$ in $I$ with $x_n \to a$ and $x_n \neq a$ for all $n$ the sequence $f(x_n)$ converges to $l$.

$f(x)$ tends to $l$ as $x$ tends to $a$ from the left, $\lim\limits_{x \to a-} f(x) = l$, if for every sequence $x_n$ in $I$ with $x_n \to a$ and $x_n < a$ for all $n$ we have $f(x_n) \to l$.

$f(x)$ tends to $l$ as $x$ tends to $a$ from the right, $\lim\limits_{x \to a+}f(x)=l$, if for every sequence $x_n$ in $I$ with $x_n \to a$ and $x_n > a$ for all $n$ we have $f(x_n) \to l$.

$\lim\limits_{x \to a}f(x)$ exists and equals $l$ if and only if $\lim\limits_{x \to a-}f(x)$ and $\lim\limits_{x \to a+}f(x)$ both exist and equal $l$.

Limits of floor and ceiling functions

For any integer $k$:

$\lim\limits_{x \to k-}\lfloor x\rfloor=k-1$$\lim\limits_{x \to k+}\lfloor x\rfloor = k$
$\lim\limits_{x\to k-} \lceil x \rceil = k$$\lim\limits_{x \to k+} \lceil x \rceil = k+1$

Combination rules for limits

If $\lim\limits_{x \to a} f(x) = l$ and $\lim\limits_{x \to a}g(x)=m$ then

sum rule$\lim\limits_{x \to a}(f(x)+g(x)) = l+m$
multiple rule$\lim\limits_{x \to a} \lambda f(x) = \lambda l$, $\lambda \in \mathbb{R}$
product rule$\lim\limits_{x \to a} f(x)g(x) = lm$
quotient rule$\lim\limits_{x \to a} f(x)/g(x) = l/m$, $m \neq 0$

Squeeze rule for limits: If $f(x) \leq g(x) \leq h(x)$ for $x \neq a$, $\lim\limits_{x \to a} f(x) = l$ and $\lim\limits_{x \to a} h(x) = l$ then $\lim\limits_{x \to a} g(x) = l$.

Continuity

Let $f:D \to \mathbb{R}$ be a function defined on some subset $D$ of $\mathbb{R}$. We say that $f$ is continuous at a point $a \in D$ if $\lim\limits_{x \to a} f(x)$ exists and equals $f(a)$. We say that $f$ is continuous if it is continuous at $a$ for every $a \in D$.

Combination rules for continuous functions

If $f$ and $g$ are continuous at $a$, then so are

the sum$f+g$
the multiple$\lambda f$, $\lambda \in \mathbb{R}$
the product$fg$
the quotient$f/g$, $g(a) \neq 0$.

If $f$ if continuous at $a$ and $g$ is continuous at $f(x)$ then the composite function $g \circ f$ is continuous at $a$.

The value of $\lim\limits_{x \to a} f(x)$ does not depend on the value of $f(a)$ at $a$. The limit can exist even when $f$ is not defined at $a$.